

Character association study in curry leaf (Murraya koenigii (L.) Spreng.) genotypes

K. Vithya^{1*} and N. Shoba²

^{1*} Research scholar, Department of Spices and Plantation Crops, HC & RI, TNAU, Coimbatore ² Professor, Department of Spices and Plantation Crops, HC & RI, TNAU, Coimbatore Corresponding author mail id: <u>vithyassv@gmail.com</u>

Theme – Crop Improvement and Biotechnology

Results

Introduction

- Curry leaf small perennial spice tree, but cultivated as a shrub for its scented leaves
- Commercial cultivation South India and mainly in Tamil Nadu and Karnataka
- Evaluation of yield performance effective method of selection of suitable genotypes with good yield
- Association between morphological characters essential to identify the desirable traits for yield improvement in curry leaf

Materials and Methods

- Study carried out at the department of Spices and Plantation, HC & RI, TNAU, Coimbatore
- Eight curry leaf genotypes TPMK 1, TPMK 2, ANMK 3, KMMK 4, KMMK 5, KMMK 6, KMMK 7 and KMMK 8
- Experimental design Randomized Block Design with three replications

Morphological characters observed

- 1. Plant height (cm), 2. Inter-nodal length (cm)
- 3. No. of matured shoots/ plant
- 4. Length of matured shoots (cm)
- 5. Weight of matured shoots (g)
- 6. No. of compound leaves/ matured shoot
- 7. No. of leaflets/compound leaf
- 8. Fresh leaf yield/plant (g)
- Yield performance and correlation coefficients
- computed by using statistical software SPSS 20.0

Acknowledgment: Department of Spices and Plantation Crops, HC & RI, TNAU, Coimbatore

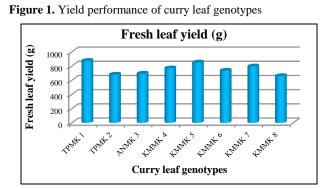


Table 1. Character association analysis in curry leaf genotypes

	\mathbf{X}_1	X_2	X ₃	X_4	X5	X_6	X ₇	X_8
X ₁	1	-0.005	0.520*	0.296	-0.048	0.567**	0.775**	0.010
X2		1	0.040	-0.415*	-0.317	-0.389*	-0.446*	0.425*
X ₃			1	-0.072	- 0.595**	-0.248	0.228	0.484*
X4				1	0.109	0.719**	0.773**	-0.225
X5					1	0.398*	0.079	0.002
X ₆						1	0.821**	-0.364
X7							1	-0.520*
X ₈								1

 X_1 - Plant height (cm) X_2 - Inter-nodal length (cm)

- X₃- No. of matured shoots/ plant
- X₄- Length of matured shoots (cm)
- X₅- Weight of matured shoots (g)
- X₆- No. of compound leaves/ matured shoot
- X₇- No. of leaflets/compound leaf
- X_8 Fresh leaf yield/plant (g)

Conclusion

- **TPMK 1** more no. of matured shoots and fresh leaf yield/ plant followed by KMMK 5
- Inter-nodal length and no. of matured shoots per plant exhibited positive correlation with **fresh leaf yield/ plant**
- **Inter-relationship** between plant characters measured by correlation coefficient analysis and **genetic yield improvement** would be determined by that selected and correlated characters (Panwar *et al.*, 2019)
- No. of matured shoots/ plant, no. of compound leaves/ matured shoot and no. of leaflets/ compound leaf recorded positive and significant correlation with **plant height**
- Length of the matured shoots showed positive correlation with no. of compound leaves/ matured shoot, no. of leaflets/ compound leaf.
- Weight of matured shoots/ plant recorded positive correlation with no. of compound leaves/ matured shoot
- No. of compound leaves/ matured shoot recorded positive and significant correlation with no. of leaflets/ compound leaf

Reference

Panwar, N. K., Swarup, I., Jain, M., Gour, L., & Katara, V. K. (2019). Association biometrical analysis of yield and yield attributing determinants in Vigna mungo (L.) hepper. *IJCS*, 7(3), 2512-2516.